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Abstract 

The widely used atom-atom approximation for 
evaluating intermolecular energies is deficient in its 
treatment of the electrostatic interactions. Lattice- 
energy calculations have been performed for three 
crystal structures with explicit incorporation of the 
electrostatic energy, at three levels of approximation, 
based on Hartree-Fock molecular charge distributions. 
Although the molecules chosen are all non-polar, the 
electrostatic term in each case provides most of the 
calculated lattice energy and leads to an appreciable 
contraction of the predicted equilibrium cell dimen- 
sions. In cyanogen the electrostatic contribution ap- 
pears necessary to account for the observed ortho- 
rhombic structure rather than an alternative cubic 
form. Treating each molecule as a point quadrupole 
severely overestimates the interaction energies of 
nearest-neighbor molecules but for more distant neigh- 
bors agrees fairly well with more detailed models of the 
molecular charge distribution. Assigning point charges 
to the several atoms is an adequate approximation for 
the three systems examined but greater flexibility is 
likely to be required for molecules of lower symmetry. 

An extensive literature on applications of the atom- 
atom approximation (see, for example, Kitaigorodskii, 
1973; Mirsky, 1976; Fyfe & Harold-Smith, 1976b; 
Williams & Starr, 1977; Derissen & Smit, 1977)attests 
to the widespread success of this model for the 
evaluation of intermolecular forces and energies. This 
success supports the approximate validity of three 
essential postulates of the model: (a) the interaction 
energy of a pair of molecules may be evaluated as a 
sum of pairwise interactions between atoms; (b) these 
interatomic interactions are isotropic, usually about the 
atomic centers; (c) they are broadly transferable, at 
least within families of related molecules. Yet it is well 
recognized that these postulates cannot be exactly 
valid. In particular, they do not properly account for 
the electrostatic interactions between molecules, which 
severely violate postulates (b) and (c). Thus, the 
Coulomb field of an atom that is electrically polarized 
is highly anisotropic, and the net charge and polari- 
zation of an atom clearly depend on its bonding 
environment. Accordingly, several authors have pro- 
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posed various elaborations of the a tom-atom potential 
for dealing explicitly with the electrostatic energy term 
(Fyfe & Harold-Smith, 1976a; Mulder & Huiszoon, 
1977; Smit, Derissen & van Duijneveldt, 1977; 
C arozzo, Corongiu, Petrongolo & Clementi, 1978). 

The derivation of an explicit electrostatic energy 
expression poses a formidable challenge: how can we 
obtain the requisite input information on the molecular 
charge distribution'?. Evidently, much of the simplicity 
of the atom-atom potential will be lost if we require an 
intensive study of each individual molecule in order to 
establish the details of its Coulomb field. To preserve 
the simplicity and generality of the model it is desirable 
that an attempt be made to identify transferable para- 
meters that can adequately characterize the charge 
distributions of particular bonds or chemical groups. 
But this is a long-range program. Our present aim is far 
more modest: to examine what algebraic form is appro- 
priate for approximating the intermolecular electro- 
static energy. Specifically, we compare three variously 
idealized representations of the molecular charge distri- 
bution for the calculation of crystal lattice energies. 
One outcome of such a study may be a tentative 
indication of how detailed our knowledge of the 
molecular charge density must be to permit realistic 
evaluation of the intermolecular Coulomb energy. 

The model systems chosen for this study are the 
three crystal structures acetylene, carbon dioxide, and 
cyanogen. The relevant crystal data are given in Table 
1. The molecules chosen have appreciable quadrupole 
moments but are non-polar and occupy crystallo- 
graphic inversion centers. Accordingly, while the 
electrostatic part of the lattice energies is far from negli- 
gible, the induced molecular polarization is likely to be 
unimportant. This means that we can safely treat the 

Table 1. Crystal data of acetylene (high-temperature 
form), carbon dioxide, and cyanogen 

Space 
Compound group a (/~,) b (A) c (,/k) T (K) Reference 

C2H 2 Pa3 6.091 141 (a) 
CO 2 Pa3 5.54 0 (b) 
C2N 2 Pcab 6.31 7.08 6.19 178 (c) 

References: (a) van Nes (1977), (b) Keesom & K6hler (1934), 
(c) Parks & Hughes (1963). 
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molecular charge densities as frozen in the evaluation 
of their mutual electrostatic interactions. 

The molecular charge densities have been derived 
from the Hartree-Fock wavefunctions of McLean & 
Yoshimine (1967). The absolute accuracy of the 
Hartree-Fock charge-density maps is here of secon- 
dary import; more relevant to the present comparison is 
that such theoretical maps are far more detailed than 
any that are available experimentally. These calculated 
charge densities have been represented, for the purpose 
of the electrostatic calculations, at three levels of 
approximation. 

Atomic moments (AM) 

In the most detailed representation, the molecular 
charge density is decomposed into atomic fragments 
according to the stockholder recipe of Hirshfeld (1977). 
Each atomic fragment is then represented by its calcu- 
lated net charge, dipole and quadrupole moments 
localized at the atomic nucleus. 

Atomic charges (A C) 

At an intermediate level of approximation each atom 
is represented by a point charge at its center, the values 
of the atomic charges being chosen to reproduce the 
calculated molecular quadrupole moment. 

Molecular moment ( MM) 

The crudest approximation is to replace each mole- 
cule by a point quadrupole placed at its center of 
symmetry. 

Table 2. Input parameters for electrostatic calculations 

Atomic charges q (e), dipole moments # (D), and quadrupole moments 
O (Buckinghams) are according to Table 1 of Hirshfeld (1977). Effective 
charges q' (e) are chosen to reproduce calculated molecular quadrupole 
moments O m°l. All moments are directed along molecular axis, with positive 
sense to the right. Indicated bond lengths (A) correspond to molecular 
dimensions adopted for the Hartree-Fock wavefunctions of McLean & 
Yoshimine (1967). [1 e = 1.6022 x 10 -19 C; 1 D = 3.336 x 10 -30 C m; 
1 Buckingham = 3.336 x 10-4°C mZ.] 

C2H 2 H 1.059 
q +0.094 
/~ -0 .494  
O +0.030 
q' +0.312 
omol 

CO z O 1.136 
q -0 .207  
# +0.206 
O -0 .032  
q' --0.410 
Omol 

C2N z N 1.157 

q --0.126 
/~ +0.158 
O --0.491 
q' --0.322 
omol 

C 1.207 C 1.059 H 
-0 .094  -0 .094  +0.094 
-0 .764  +0.764 +0.494 
-0 .083  -0 .083  +0.030 
-0 .312  -0 .312  +0.312 

C 
+0.414 

0 
-1 .594  
+0.820 
-5 .293  

C 

+0.126 
+0-685 
-0 .738  
+0.322 

+7.188 

1.136 

1.380 

-9 .069  

O 
-0 .207  
-0 .206  
-0 .032  
- 0 . 4 1 0  

C 

+0-126 
-0 .685  
-0 .738  
+0.322 

1.157 N 

- 0 . 1 2 6  
-0 .158  
--0.491 
-0 .322  

The parameter values appropriate to these models 
are listed in Table 2. For consistency the same value of 
the molecular quadrupole moment has been adopted 
for all three models. We note that in all three molecules 
the effective atomic charges q' required to reproduce 
this calculated value of O m°~ are some two to three times 
larger than the directly evaluated charges q, i.e. these 
charges have been scaled up to compensate for the 
neglected atomic dipole and quadrupole moments. 

The van der Waals part of the lattice energy was 
calculated from the atom-atom potentials advocated 
by Mirsky (1978). These have the form and the 
parameter values given in Table 3. They have been 
tested on a variety of crystal calculations and appear to 
be among the most suitable to be found in the literature. 
The H . . . H ,  C . . . C ,  and H . . . C  potentials were 
derived from a selection of hydrocarbon crystal data 
and give good agreement with their observed structures, 
elastic constants, and sublimation energies (Mirsky, 
1976). It should, however, be noted that these com- 
parisons neglected the electrostatic contribution to the 
lattice energy so it is not quite correct to regard the 
derived potentials as representing the van der Waals 
energy alone. The N . . - N  potential was deduced from 
the crystal data for NzO, whose measured sublimation 
energy was explicitly corrected for the estimated 
quadrupole-quadrupole interaction energy (Mirskaya 
& Nauchitel', 1972). For the O . . .  O potential a similar 
fit was made to the lattice energy of CO 2, corrected for 
the estimated electrostatic contribution (Kitaigorodskii, 
Mirskaya & Nauchitel', 1970). In all cases the poten- 
tial between two unlike atoms has been derived 
according to the combining rules given by Mirskaya 
(1973). 

At low temperature acetylene is orthorhombic, space 
group Acam, but accurate cell dimensions and atomic 
coordinates have been reported only for the deuterated 
compound (Koski & Sfindor, 1975). Above 133 K it is 
cubic, Pa3 (see Table 1), and it is this more symmetric 
structure that we have adopted for our present 
calculations. Table 4 lists the calculated van der Waals 
and electrostatic energies for molecule pairs occurring 
in this structure. The convergence of the corresponding 
calculated lattice energy is depicted in Fig. 1. The 
electrostatic term has been evaluated in accordance 
with each of the three models described above. Of 

Table 3. Atom-atom van der Waals potentials 
[~0 = - - A t  --6 + B exp (--ar)] 

A B (x 10 -s)  a 
A t o m  pair  (kJ mo1-1 A s) (kJ tool - l )  (A -1) 

C - . - C  1761 3 .00  3 .68  
H . - - H  121 0.21 4 .29  
O . . .  O 1085 3.25 4 .18  
N . . . N  1084 1.76 3 .78 
H - . .  C 494 0 .78  3 .94 
O . . . C  1420 3.17 3.91 
N . . . C  1387 2-31 3.73 
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particular interest is the observation that each molecule 
in this structure has binding interactions with all its 
near neighbors out to the fifth shell. Inspection of Fig. 1 
shows that the calculated lattice energy has effectively 
converged at a limiting intermolecular separation of 
about 15 A. The van der Waals and electrostatic terms 
make comparable contributions to the lattice energy. 
Comparison of the three electrostatic models shows a 
pattern that is typical for all three structures examined: 
the differences among these models quickly become 
negligible beyond the first one or two shells, but for the 
nearest neighbors models AC and MM give interaction 
energies 9 and 63% larger, respectively, than that 
obtained from the most detailed AM model. The electro- 
static part of the lattice energy for the three models is 
--15.0 (AM), --16.1 (AC), and - 2 3 . 0  (MM) kJ mol -~. 

Fig. 2 shows the calculated lattice energy of 
acetylene as a function of the unit-cell edge a, the 
molecular dimensions (Table 2) and orientation being 
held constant as a is varied. The electrostatic term has 

Table 4. C 2 H 2 :  calculated van der Waals (Uvdw) and 
electrostatic (uet) intermolecular energies (kJ mol -I  
o f  dimer) f o r  inner 12 shells around the reference 

molecule at 000 

R is the center-to-center distance, and M is the number of equivalent 
molecules in the shell. 

AM AC Site R (A)  M Uvd w Uel Uel Ue~ M 

• ~ 0  4 . 3 0 6  12 - 1 . 6 5 6  - 2 . 0 3 4  - 2 . 2 1 2  - 3 . 3 2 6  
100 6 .091  6 - - 0 . 2 6 7  - 0 . 5 8 9  - 0 . 6 3 4  - 0 . 8 6 7  
1,~ 7.461 24 -0.094 -0.077 -0.070 -0.038 
110 8.613 12 -0.038 -0.113 -0.106 -0.071 
N0 9.630 24 -0.016 -0.039 -0.039 -0.039 
111 10.550 8 -0.012 +0.171 +0.166 +0.143 
½1½ 11.396 48 -0.006 +0.033 +0.033 +0.032 
200 12-182 6 - 0 - 0 0 4  -0.025 -0.026 -0.027 
2~ 12.919 24 -0.003 +0.002 +0.002 +0.003 
~0 12.919 12 -0.003 -0.013 -0.013 -0.014 
210 13.619 24 -0.002 -0.013 -0.013 -0-012 
{~I 14.283 24 --0.002 -0.014 -0.014 -0.014 

-8 .4  

~ ~ w  

U~ c 

"" -12.5 i 
"5 
E 

~ -16.7 
z 

<-a - 2 0 . 9 k  MM 
Uel 

6 8 10 12 14 16 18 
R (A) 

Fig. 1. C2H2: components Uvd w and Uel, for three models, of 
calculated lattice energy vs limiting radius R. 

been evaluated according to model AM and the calcu- 
lation embraces 21 shells of neighbors, corresponding 
to a limiting radius of 18.3 A at the experimental cell 
edge a = 6.09 A. The van der Waals potential alone is 
seen to provide about 13 kJ mol -~ of lattice energy, 
compared to an experimental value of  24.3 kJ mo1-1 
(Table 5). This experimental determination is highly 
uncertain, depending on a doubtful extrapolation to 0 K 
of the sublimation energy measured in the high- 
temperature phase at 162 K. Adding the electrostatic 
term produces an overcorrection of the calculated 
lattice energy and shifts its minimum from 5.92 A to a 
predicted cell dimension of 5.65 A. The difference 
between this and the observed 6.09 A is too large to be 
plausibly attributed to thermal expansion between 0 K 
and the experimental temperature of 141 K. Much of 
the discrepancy, in lattice energy and in cell edge, may 
arise from a grossly overestimated theoretical quad- 
rupole moment, 7.19 Buckinghams compared to an 
experimental value of 3.0 (Stogryn & Stogryn, 1966). 
But an additional possibility is that the empirical a tom-  
atom potentials we have employed may already 
include, in disguised form, a non-negligible fraction of 
the electrostatic contribution to the lattice energy. 

Table 5. Exper imenta l  and calculated lattice energies 
(kJ mo1-1) 

The measured sublimation energy AH r at temperature Tis adjusted 
to 0 K by the approximate expression: AH ° = AH~ + 2RT (Rae & 
Mason, 1968). Uex p is the calculated lattice energy at the experi- 
mental cell dimensions; Um~ . is the minimum of U vs cell size. 

Crystal AHrs T (K) AH°s Reference - - U e x  p - - U m l  n 
C2H 2 21.8 162 24.3 (a) 27.6 31.6 
CO 2 26.9 (b) 32.0 32.0 
C2N 2 32.4 224 36.2 (c) 30.3 30-5 

References: (a) Jones (1960), (b) Pople (1954), (c) Perry & 
Bardwell (1925). 

- 8 . 4  ~U~a w 
- 1 2 . 5 ~  

C 
"-6 
E 
". -16.7 

Z -20.9 

~ -25.1 

-29.3 

-33.4 

9 

, I , I , I 
5.5 5.7 5.9 6-1 

a CA) 

Fig. 2. C2H2: variation of calculated lattice energy U = Uvd w + Uel 
with unit-cell edge a. The arrow marks the observed value of a. 
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A corresponding series of  calculations has been 
performed for CO 2. Here, too, the three electrostatic 
models give roughly similar energies and the largest 
disparity among them is for the nearest-neighbor 
interactions, where the electrostatic energy is calculated 
as - 2 - 4  (AM), --2.3 (AC), or - 2 - 9  (MM) kJ mo1-1 of 
dimer. Fig. 3 plots the lattice-energy contributions as a 
function of unit-cell edge. The van der Waals term 
alone is seen to be much smaller in magnitude than the 
experimental lattice energy (Table 5) and to reach a 
minimum at a much larger value of a than is found 
experimentally. Inclusion of the electrostatic energy 
improves the fit considerably, giving a calculated lattice 
energy of - 3 2 . 0  kJ mol -~ (exp. - 2 6 . 9 )  at a = 5.51 /~, 
(exp. 5.54). This agreement is largely tautological, 
however, as the O . . . O  van der Waals potential was 
originally derived (see above) to fit the crystal data  for 
CO 2 with explicit allowance for the electrostatic 
contribution. Since this contribution had been evaluated 
from the experimental quadrupole moment of 4.3 
Buckinghams (Stogryn & Stogryn, 1966) it is entirely 
understandable that the theoretical value of 5.29 
Buckinghams appears to produce too large a correc- 
tion. 

Our final, and most revealing, example is cyanogen, 
space group Pcab. Here each molecule has three dif- 

Table 6. C2N2." calculated intermolecular energies 
(kJ mo1-1 o f  dimer) f o r  innermost  shells 

AM AC Site R (.~.) M uva w uel uel u~ M 
½0~ 4.420 4 -1.983 -2.982 -3.825 -7.071 
0~ 4.702 4 -1.209 -4.354 -4.586 -5-271 

4-742 4 -1.894 + 1 . 2 2 3  + 1 . 3 2 7  +1.625 
001 6. 190 2 --0-965 -1-402 -1-278 -0-631 
100 6.310 2 -0-322 + 0 . 3 0 8  + 0 . 3 0 6  +0.212 
010 7.080 2 -0-200 -0.243 -0.293 -0.479 
~1 7.798 8 -0.208 -0.126 -0.096 -0.025 
1~ 7.869 8 -0.122 -0.066 -0.074 -0.097 
1 1 ~1~ 8.346 8 -0.105 -0.258 -0.248 --0.206 

--14.2 ~ 

~ 16-7 ~ 

~ -1"/.6 

E 
~ --31.68 

-32.02 t- ~ I I 1 
5.46 5.50 5-54 5.58 5.62 

a (A) 
Fig. 3. CO2: variation of calculated lattice energy with unit-cell 

edge a. The arrow marks the observed value of a. Note expanded 
scale for total U. 

ferent sets of nearest and of  next-nearest neighbors, 
etc., at appreciably different distances and mutual 
orientations. Table 6 lists the calculated intermolecular 
energies for the first few such shells, where the 
differences among the three electrostatic models are, as 
usual, most pronounced. For  all these models the 
calculated lattice energy again converges within a 
limiting radius of 15 A. The van der Waals part of the 
calculated lattice energy is - 1 4 . 5  kJ mo1-1, while the 
electrostatic term, for the several models, contributes 
- 1 5 . 7  (AM), - 1 7 . 2  (AC), or - 2 3 . 6  kJ mo1-1 (MM). 

Fig. 4 (full curves) shows the variation of the calcu- 
lated lattice energy, and of its van der Waals and 
electrostatic components, as the unit cell is expanded or 
contracted uniformly in all three axes. As in CO 2 the 
inclusion of the electrostatic term greatly improves the 
calculated values of the cell dimensions and of the total 
lattice energy (Table 5). This result is a more con- 
vincing demonstration of  the essential validity of the 
model, since the cyanogen crystal played no role in the 
derivation of the N . . .  N van der Waals potential. 

Further vindication of  the model would be a demon- 
stration that it can explain the difference in space group 
between CO 2 and C2N 2. To show that space group Pa3 
provides the most stable structure for CO 2 would 
require an exhaustive search for minimum-energy 
structures in all possible subgroups of Pa3.  The 
converse is much more readily tested, that a Pa3 
structure for C2N 2 leads to a higher calculated energy 
than the observed Pcab structure. This comparison is 
shown in Fig. 4, which plots the calculated energies of 
the two alternative cyanogen structures. Corres- 
ponding points on the two sets of curves in this figure 

-12.5 

-14.6 

E -16-7 

Z -29-3 

~ -29-7 

-30- I 

-30.5 
0.97 

Uvaw 

/ 
\ 

0.98 0.99 1-00 1.01 
K 

Fig. 4. C2N2: variation of calculated lattice energy with uniform 
expansion or contraction of unit cell; scale factor K muliplies 
observed unit-cell edges. Full lines - observed Pcab structure; 
broken lines - hypothetical Pa3 structure having the same unit- 
cell volume. 
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refer to equal unit-cell volumes. Throughout the region 
of interest the orthorhombic structure is seen to be 
uniformly more stable than the corresponding cubic 
structure. This is not the case, however, for the van der 
Waals energy alone, which is higher in the ortho- 
rhombic than in the cubic structure. Thus inclusion of 
the electrostatic contribution is apparently necessary to 
explain the preference of cyanogen for space group 
Pcab rather than Pa3. The reverse order found for the 
van der Waals energy may seem incongruous inasmuch 
as the minimum-energy structure in the subgroup sym- 
metry Pcab cannot possibly be less stable than the 
more symmetric Pa3 structure. But we have not, in 
fact, sought the most stable Pcab structure. The ortho- 
rhombic structure plotted in Fig. 4 is simply the 
observed structure, with unit-cell shape and molecular 
orientation fixed, the only variable parameter being a 
single factor scaling all three cell edges. This is directly 
comparable to the single variable cell edge in the cubic 
Pa3 structure. Thus it is not entirely trivial that the 
observed orthorhombic structure for cyanogen gives a 
lower calculated energy than the alternative cubic 
structure. 

A more searching test of the potential function would 
be to vary all structural parameters, i.e. cell dimensions 
and molecular orientation, in search of a global energy 
minimum for comparison with the observed crystal 
structure of cyanogen. But this is a lengthy and 
expensive task, while a partial search, in one or two 
dimensions only, is of doubtful value. For example, as 
has been repeatedly demonstrated, rotation of the 
molecule about one or two axes is virtually certain to 
produce a sharp energy minimum near the observed 
orientation unless the cell dimensions are simul- 
taneously allowed to vary from their experimental 
values. 

The results reported above indicate that the cal- 
culation of crystal lattice energies can be significantly 
improved by the explicit inclusion of the electrostatic 
energy. This can evidently be approximated reasonably 
well by a fairly crude representation of the molecular 
charge distribution. Representing each molecule by a 
point dipole (untested) and quadrupole appears to be 
unsatisfactory even for the small molecules examined 
here. But a point charge at each atomic center yields 
electrostatic lattice energies within about 10% of those 
obtained from a much more detailed description of the 
charge density, even though the discrepancy for 
individual molecular pairs may be close to 30% as seen 
in Table 6. The adequacy of such a point-charge model 
should not change drastically with the size of the 
molecule. Accordingly, it seems that efforts to improve 
on the usual atom-atom approximation might usefully 
be directed towards the derivation of appropriate values 
of effective point charges for incorporation in a model 
of this type. 

Note, however, that the simplicity of the atomic- 
charge model described above owes much to the 

unusually high symmetry of the three molecules 
studied. In the absence of any simplifying symmetry, 
representing the molecular Coulomb field up to 
quadrupole terms requires us to fit one monopole, three 
dipole, and five independent quadrupole components. 
Clearly, this cannot be done with three or four charges 
at predetermined positions. Achieving an adequate 
representation by point charges may, in the general 
case, require placing such charges at other than the 
atomic centers. 

This research was supported by a grant from the 
United States-Israel Binational Science Foundation 
(BSF), Jerusalem, Israel. 
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